# The Ge-In-Ni (Germanium-Indium-Nickel) System

K.P. Gupta, The Indian Institute of Metals, India

## Introduction

Very little work has been done in the Ge-In-Ni system. Only one isothermal section has been established and is reported here.

### **Binary Systems**

The Ge-In system [Massalski2] (Fig. 1) is a simple eutectic system with the eutectic point very close to In. The eutectic temperature is 156.29 °C. There is practically no solubility of In in Ge, nor of Ge in In.

The Ge-Ni system [1991Nas] (Fig. 2) has nine intermediate phases:  $\beta$ GeNi<sub>3</sub> ( $\beta$ ),  $\gamma_1$ GeNi<sub>3</sub> ( $\gamma_1$ ),  $\delta$ Ge<sub>2</sub>Ni<sub>5</sub> ( $\delta$ ), GeNi<sub>2</sub> ( $\pi$ ),  $\epsilon$ 'Ge<sub>3</sub>Ni<sub>5</sub> ( $\epsilon$ '),  $\epsilon$ Ge<sub>3</sub>Ni<sub>5</sub> ( $\epsilon$ ), Ge<sub>12</sub>Ni<sub>19</sub> ( $\zeta$ ), Ge<sub>2</sub>Ni<sub>3</sub> ( $\xi$ ), and GeNi ( $\iota$ ). The  $\beta$  and  $\epsilon$  phases melt congruently at 1132 and 1185 °C, respectively and the  $\epsilon \rightarrow \epsilon'$  transformation occurs congruently at ~398 °C. The  $\gamma_1$ ,  $\delta$ ,  $\zeta$ ,  $\xi$ , and  $\iota$  phases form through peritectic reactions: L +  $\beta \leftrightarrow \gamma$  at 1118 °C, L +  $\gamma_1 \leftrightarrow \delta$  at 1102 °C, L +  $\epsilon \leftrightarrow \zeta$  at 1050 °C, L +  $\zeta \leftrightarrow \xi$  at 990 °C, and L +  $\xi \leftrightarrow \iota$  at 850 °C. The  $\pi$  phase forms through a peritectoid reaction  $\beta + \varepsilon \leftrightarrow \pi$  at 506 °C. Three eutectic reactions  $L \leftrightarrow \gamma + \beta$ ,  $L \leftrightarrow \delta + \varepsilon$ , and  $L \leftrightarrow \iota + (Ge)$ occur at 1124, 1099, and 762 °C, respectively.  $\gamma$  is the terminal face-centered cubic (fcc) solid solution (Ni). The  $\gamma_1$ and  $\delta$  phases exist only at high temperatures and undergo eutectoid transformation  $\gamma_1 \leftrightarrow \beta + \delta$  and  $\delta \leftrightarrow \beta + \varepsilon$  at 1082 and 1045 °C, respectively. The  $\zeta$ ,  $\xi$ , and  $\varepsilon$  phases undergo four eutectoid transformations:  $\xi \leftrightarrow \zeta + \iota$ ,  $\varepsilon \leftrightarrow \varepsilon' + \zeta$ ,  $\zeta \leftrightarrow \varepsilon' + \iota$ , and  $\varepsilon \leftrightarrow \pi + \varepsilon'$  at 515, ~394, 382, and 290 °C, respectively.

The In-Ni system [1991Nas] (Fig. 3) has eight intermediate phase: InNi<sub>3</sub> ( $\tau$ ), InNi<sub>2</sub> ( $\lambda$ ), In<sub>9</sub>Ni<sub>16</sub> ( $\epsilon$ ), In<sub>9</sub>Ni<sub>13</sub> ( $\rho$ ), InNi ( $\theta$ ), InNi ( $\delta_1$ ), In<sub>3</sub>Ni<sub>2</sub> ( $\nu$ ), and In<sub>72</sub>Ni<sub>28</sub> ( $\eta$ ), of which the  $\epsilon$  and  $\delta$  phases melt congruently at 990 and 950 °C, respectively. The  $\nu$  and  $\eta$  phases form through peritectic reactions L +  $\delta \leftrightarrow \nu$  at 870 °C and L +  $\nu \leftrightarrow \eta$  at 409 °C. The  $\tau$ ,  $\lambda$ ,  $\rho$ , and  $\theta$  phases form through peritectid reactions  $\gamma$  +  $\epsilon$  $\leftrightarrow \tau$ ,  $\tau + \epsilon \leftrightarrow \lambda$ ,  $\epsilon + \delta_1 \leftrightarrow \rho$ , and  $\rho + \delta_1 \leftrightarrow \theta$  at 848, 665, 876, and 860 °C, respectively. The  $\epsilon$  and  $\delta$  phases undergo eutectoid transformation  $\epsilon \leftrightarrow \lambda + \rho$  at 482 °C and  $\delta_1 \leftrightarrow$  $\theta + \nu$  at 770 °C. Three eutectic reactions L  $\leftrightarrow \gamma + \epsilon$ , L  $\leftrightarrow$  $\epsilon + \delta$ , and L +  $\eta$  + (In) occur at 910, 918, and ~156 °C, respectively. The Ni<sub>2</sub>In phase has an invariant composition.



Fig. 1 Binary Ge-In phase diagram [Massalski2]



Fig. 2 Binary Ge-Ni phase diagram [1991Nas]



Fig. 3 Binary In-Ni phase diagram [1991Nas]

#### **Binary and Ternary Phases**

In the three binary systems Ge-In, Ge-Ni, and In-Ni, 17 intermediate phases form. No ternary intermediate phase has been reported in the Ge-In-Ni system. The binary phases and their structure data are given in Table 1.

# **Ternary System**

The Ge-In-Ni system has been investigated by [1982Bor]. The alloys were melted, using pure metals of 99.9 mass% purity, in evacuated and sealed quartz tubes, homogenized at 800 °C, then annealed at 650 °C for 12 h and water

| Phase designation     | Composition (a)                              | Pearson's symbol | Space group       | Туре                              | Lattice parameter, nm  |                      |         |
|-----------------------|----------------------------------------------|------------------|-------------------|-----------------------------------|------------------------|----------------------|---------|
|                       |                                              |                  |                   |                                   | а                      | b                    | с       |
| γ                     | (Ni)                                         | cF4              | $Fm\overline{3}m$ | Cu                                |                        |                      |         |
| In                    | (In)                                         | tI2              | I4/mmm            | In                                |                        |                      |         |
| Ge                    | (Ge)                                         | cF8              | $Fd\overline{3}m$ | C (diamond)                       |                        |                      |         |
| β                     | βGeNi <sub>3</sub>                           | cP4              | $Pm\overline{3}m$ | AuCu <sub>3</sub>                 | 0.357                  |                      |         |
| γ1                    | γ <sub>1</sub> GeNi <sub>3</sub>             |                  |                   |                                   |                        |                      |         |
| δ                     | δGe <sub>2</sub> Ni <sub>5</sub>             | hP84             | $P6_3/mmc$        | $Pd_5Sb_2$                        | 0.6827                 |                      | 1.2395  |
| π                     | GeNi <sub>2</sub>                            | oP12             | Pnma              | Co <sub>2</sub> Si                | 0.7264                 | 0.511                | 0.383   |
| ε′                    | ε'Ge <sub>3</sub> Ni <sub>5</sub>            | mC32             | <i>C</i> 2        | Ge <sub>3</sub> Ni <sub>5</sub>   | 1.1682                 | 0.6737               | 0.6364  |
|                       |                                              |                  |                   |                                   | $\beta = 52.1^{\circ}$ |                      |         |
| 3                     | εGe <sub>3</sub> Ni <sub>5</sub>             | hP4              | $P6_3/mmc$        | AsNi                              | 0.3955                 |                      | 0.5047  |
| ζ                     | Ge <sub>12</sub> Ni <sub>19</sub>            | mC62             | <i>C</i> 2        | Ge <sub>12</sub> Ni <sub>19</sub> | 1.1631                 | 0.6715               | 1.0048  |
|                       |                                              |                  |                   |                                   |                        | $\beta = 90^{\circ}$ |         |
| ٤                     | Ge <sub>2</sub> Ni <sub>3</sub>              | hP4              | $P6_3/mmc$        | AsNi                              | 0.386                  |                      | 0.500   |
| 1 I                   | GeNi                                         | oP8              | Pnma              | MnP                               | 0.581                  | 0.538                | 0.343   |
| τ                     | InNi <sub>3</sub>                            | hP8              | $P6_3/mmc$        | Ni <sub>3</sub> Sn                | 0.5320                 |                      | 0.4242  |
| λ                     | InNi <sub>2</sub>                            | hP6              | $P6_3/mmc$        | InNi <sub>2</sub>                 | 0.4179                 |                      | 0.5131  |
| 3                     | In <sub>9</sub> Ni <sub>16</sub> (31.0-41.5) | hP4              | $P6_3/mmc$        | AsNi                              | 0.41889                |                      | 0.51230 |
| ρ                     | In <sub>9</sub> Ni <sub>13</sub> (38.5-42.2) |                  |                   |                                   |                        |                      |         |
| θ                     | InNi                                         | hP6              | P6/mmm            | CoSn                              | 0.4537                 |                      | 0.4345  |
| $\delta_1$            | InNi                                         | cP2              | $Pm\overline{3}m$ | CsCl                              | 0.3093                 |                      |         |
| ν                     | In <sub>3</sub> Ni <sub>2</sub>              | hP5              | <i>Pm</i> 31      | Al <sub>3</sub> Ni <sub>2</sub>   | 0.918                  |                      |         |
| η                     | In <sub>72</sub> Ni <sub>28</sub>            |                  |                   | γ brass                           |                        |                      |         |
| (a) Numbers in parent | theses are in at.% In                        |                  |                   |                                   |                        |                      |         |

Table 1 Phases in the Ge-In, Ge-Ni, and In-Ni binary systems and their structure data

quenched. Only x-ray diffraction (XRD) was used for phase identification and phase boundary determination. For XRD work the alloys were powdered, sealed in evacuated quartz tubes, recrystallized at 650 °C, and then quenched in water. The 650 °C isothermal section established by [1982Bor] is given in Fig. 4 after making some adjustments of phase boundaries to agree with the accepted binary data.

To determine the 650 °C isothermal section [1982Bor] used only a few alloys containing from about 25 at.% Ge and In to about 65 at.% Ge and In, and hence only a partial isothermal section was established. The fcc  $\gamma$  phase boundary at the Ni corner was not experimentally determined, and the  $\gamma$  phase boundary does not agree with the binary In-Ni and Ge-Ni systems. The probable  $\gamma$  phase boundary is shown schematically in Fig. 4. The binary phases  $\tau$ ,  $\beta$ ,  $\lambda$ ,  $\rho$ ,  $\nu$ , and  $\iota$  phases were found to extend into the ternary only marginally, <2 at.% In or Ge. The  $\tau$  and  $\beta$ phases were found in equilibrium with each other and are found in equilibrium with the  $\varepsilon$  phase. A three-phase region  $\gamma + \tau + \beta$  should exist and is shown schematically in Fig. 4. The isostructural Ge<sub>3</sub>Ni<sub>5</sub> and In<sub>9</sub>Ni<sub>16</sub> phases form a continuous solid solution region  $\varepsilon$  extending from the Ge-Ni binary to the In-Ni binary. [1982Bor], however, had shown the  $\varepsilon$  phase region to extend up to ~41 at.% Ge at the Ge-Ni binary, which does not agree with the accepted binary data. The Ge-Ni binary indicates at 650 °C the solubility of Ge in the  $\varepsilon$  phase to be about 38 at.% Ge, and between 38 and 41 at.% Ge two more intermediate phases  $\zeta$  and  $\xi$  exist in the Ge-Ni binary. [1982Bor] did not show these two phases. [1982Bor] also found a phase Ni<sub>3</sub>In<sub>7</sub> extending from the In-Ni binary up to ~15 at.% Ge. The accepted In-Ni binary does not have an In7Ni3 phase, but has an In72Ni28 phase that exists at temperature <409 °C. The In<sub>7</sub>Ni<sub>3</sub> phase is possibly the  $In_{72}Ni_{28}$  phase ( $\eta$ ). This probably means that the low-temperature phase In<sub>72</sub>Ni<sub>28</sub> phase is stabilized to higher temperature by the addition of Ge. The  $\eta$  phase in the ternary thus cannot extend to the In-Ni binary at 650 °C. Accordingly, the n phase boundary has been terminated close to the In-Ni binary and an expected three-phase equilibrium triangle  $L + \eta + v$  has been shown schematically in Fig. 4. At 650 °C a liquid region (L) should exist at the In corner of the Ge-In-Ni system and phase equilibrium involving the L and  $\eta$  and Ge should exist. This was not shown by [1982Bor], and in Fig. 4 a three-phase equilibrium triangle  $L + \eta + Ge$  is shown schematically by dashed lines. The  $\varepsilon$ , v, and  $\theta$  phases were found in equilibrium. Phase equilibrium involving the  $\lambda$  and  $\rho$  phases was not determined by [1982Bor]. The probable three-phase equilibrium  $\varepsilon + \tau + \tau$  $\lambda$  and  $\varepsilon + \rho + \theta$  are shown schematically in Fig. 4. At the high Ge side of the Ge-In-Ni system the n phase was found in equilibrium with the 1 phase and Ge. [1982Bor] reported that the  $\eta$  phase is in equilibrium with the  $\iota$  and  $\varepsilon$  phases. Since [1982Bor] did not find the  $\zeta$  and  $\xi$  phases in their study of the Ge-In-Ni phase diagram, it may be assumed that the ζ and  $\xi$  phases do not extend far into the ternary. As a result of the shift of the high Ge side of the  $\varepsilon$  phase boundary (Fig. 4)



Fig. 4 An isothermal section of the Ge-In-Ni system at 650 °C [1982Bor]

and the possible presence of the  $\zeta$  and  $\xi$  phases, the boundaries of the three-phase region  $\varepsilon + \iota + \eta$  had to be shifted slightly (shown schematically by dashed lines) from that given by [1982Bor]. Because of these small adjustments made in the 650 °C isothermal section of the Ge-In-Ni system, and because the phase boundaries given in Fig. 1 are sometimes based on only one or two alloys using XRD only, it will be necessary to determine proper phase boundaries using various other techniques.

#### References

1982Bor: M. El Boragy, T. Rajasekharan, and K. Schubert, On the Mixtures NiGa<sub>M</sub>Si<sub>N</sub>, NiIn<sub>M</sub>Si<sub>N</sub>, NiIn<sub>M</sub>Ge<sub>N</sub> and NiGa<sub>M</sub>Sn<sub>N</sub>, Z. Metallkd., 1982, 73, p 193-197 (Phase Equilibria, #)

**1991Nas:** P. Nash, *Phase Diagrams of Binary Nickel Alloys*, ASM International, Metals Park, OH, 1991 (Review)

# indicates presence of phase diagram.

Ge-In-Ni evaluation contributed by **K.P. Gupta**, The Indian Institute of Metals, Metal House, Plot 13/4, Block AQ, Sector V, Calcutta, India. Literature searched through 1996. Dr. Gupta is the Alloy Phase Diagram Co-Category Program Editor for ternary nickel alloys.